
Download free eBooks at bookboon.com

Click on the ad to read more

Perl for Beginners

34

Reading from a file

9 Reading from a file

In general, a file you want to get data into your program from will not necessarily be in the same directory
as the program itself; it may have to be located by a pathname which could be long and complicated. The
structure of pathnames differs between operating systems; if you are working in a Unix environment, for
instance, the pathname might be something like:

../jjs/weather/annualRecords.txt

Whatever pathnames look like in your computing environment, to read data into a Perl program you have
to begin by defining a convenient handle which the program will use to stand for that pathname. For
instance, if your program will be using only one input file, you might choose the handle INFILE (it is
usual to use capitals for filehandles).

The code:

open(INFILE, "../jjs/weather/annualRecords.txt");

says that, from now until we hit a line close(INFILE), any reference to INFILE in the program
will be reading in data from the annualRecords file specified in the pathname.

http://bookboon.com/
http://bookboon.com/count/advert/09268424-498c-48c4-a852-a25700ed3ed3

Download free eBooks at bookboon.com

Perl for Beginners

35

Reading from a file

Having “opened” a file for input, we use the symbol <> to actually read a line in. Thus:

$a = <INFILE>;

will read in a line from the annualRecords file and assign that string of characters as the value of $a.

A line from a multi-line file will terminate in one or more line-end characters, and the identity of these
may depend on the system which created the file (different operating systems use different line-end
characters). Commonly, before doing anything else with the line we will want to convert it into an
ordinary string by removing the line-end characters, and the built-in function chomp() does that. This
is an example of a function whose main purpose is to change its argument rather than to return a value;
chomp() does in fact return a value, namely the number of line-end characters found and removed, but
programs will often ignore that value – they will say e.g. chomp($line), rather than saying e.g.
$n = chomp($line), with follow-up code using the value of $n.

(If no filehandle is specified, $a = <> will read in from the keyboard – the program will wait for the
user to type a sequence of characters ending in a newline, and will assign that sequence to $a.11)

Assuming that we are reading data from a file rather than from the keyboard, what we often want to do is
to read in the whole of the input file, line by line, doing something or other with each successive line. An
easy way to achieve that is like this:

while ($a = <INFILE>)
 {
 chomp($a);
 do something with $a
 }

The word while tests for the truth of a condition; in this case, it tests whether the assignment statement,
and hence the expression <INFILE>, is true or false. So long as lines are being read in from the input
file, <INFILE> counts as “true”, but when the file is exhausted <INFILE> will give the value
“false”. Hence while ($a = <INFILE>) assigns each line of the input file in turn to $a, and
ceases reading when there is nothing more to read. (It is a good idea then to include an explicit
close(INFILE) statement, though that is not strictly necessary.)

Our open … statement assumed that the annualRecords file was waiting ready to be opened at the place
identified by the pathname. But, of course, that kind of assumption is liable to be confounded! Even
supposing we copied the pathname accurately when we typed out the program, if that was a while ago
then perhaps the annualRecords file has subsequently been moved, or even deleted. In practice it is
virtually mandatory, whenever we try to open a file, to provide for the possibility that it does not get
opened – normally, by using a die statement, which causes the program to terminate after printing a
message about the problem encountered. A good way to code the open statement will be:

open(INFILE, "../jjs/weather/annualRecords.txt") or
 die("Can\'t open annualRecords.txt\n");

http://bookboon.com/

Download free eBooks at bookboon.com

Perl for Beginners

36

Reading from a file

Between actions, as here, the word or amounts to saying “Do the action on the left if you can, but if you
can’t, then do the action on the right”.

Sometimes we may want to deal with input one character at a time, rather than a whole line at a time, and
Perl does have ways of reading in single characters. But these techniques involve system-dependent
complications. When one is new to Perl, it is best to read in complete lines, and then break the lines up
into separate characters and deal with them individually within one’s program. (Chapter 12 will show us
an easy way of breaking a line into a set of characters.)

The above tells us how to read data in from a file. The converse operation, writing data from our program
to an external file, will be covered in chapter 11 below.

Since we have looked at die, which terminates a program after displaying a message and is commonly
used to catch errors (such as files not being located where they are expected to be), we should end this
chapter with a discussion of other ways in which Perl programs can terminate.

The most straightforward is that the flow of control simply runs out of code. Our very first program (1)
executed three statements in sequence; there was nothing left to execute, so the program terminated. Often,
though, we shall want to make the termination point explicit. We may want the program to terminate long
before reaching the last line of code, if some condition is met.

The keyword for this is exit. We’ll illustrate the use of this by example.

We have not yet discussed what the annualRecords file contains, but let’s suppose that it comprises a
record for each year since 1900, containing statistics of rainfall and average high and low temperatures, in
a format which begins with the year number, like this:

 ⋮
1949 1023 mm 13.7 degC 6.0 degC
1950 876 mm 14.2 degC 7.1 degC
 ⋮

Let’s say that we want to extract and print out just the records for the 1970s. Here is a program which will
do that:

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Perl for Beginners

37

Reading from a file

(8)

1 open(INFILE, "../jjs/weather/annualRecords.txt") or
 die("Can\'t open weather data file\n");
2 while ($line = <INFILE>)
3 {
4 chomp($line);
5 $date = substr($line, 0, 4);
6 if ($date < 1970)
7 {;}
8 elsif ($date > 1979)
9 {
10 close(INFILE);
11 exit;
12 }
13 else
14 {
15 print "$line\n";
16 }
17 }

Get Help Now

Go to www.helpmyassignment.co.uk for more info

Need help with your
dissertation?
Get in-depth feedback & advice from experts in your
topic area. Find out what you can do to improve
the quality of your dissertation!

http://bookboon.com/
http://bookboon.com/count/advert/93324fb6-34af-4083-97e3-a15f00b15c50

Download free eBooks at bookboon.com

Perl for Beginners

38

Reading from a file

The if - elsif - else construction begins by checking for years outside the period of interest. If
the date shows that the 1970s have not yet been reached, we want nothing at all to be done with that input
line, as shown by a block containing just a semicolon not preceded by any statement on line 8.7. The
current pass through the while loop will end, and the next line will be read in. (Normally we are
writing blocks with the opening and closing curly brackets, and whatever comes between them, on
separate lines; but we know that Perl does not care about that, so with just three characters in the block it
seemed simplest to put the whole block on one line.) If the program has reached a year beyond the 1970s it
closes INFILE and terminates via 8.11, without troubling to read in later records. Just in those cases where
the program gets as far as the else clause can it be dealing with a year in the 1970s, and in those cases
$line is printed out. The program will never terminate by “falling off the end of the code”, as program
(1) did: after the input file has been successfully opened in 8.1, the line 8.11 is the only route to program
termination.

Strictly, line 8.10 is unnecessary: any files opened by a program are automatically closed when that
program terminates. But it is probably good discipline to include explicit close statements – later, you
might incorporate your simple early program into a larger program which goes on to do other things, in
which case it could prove a nuisance if files that are finished with have never been closed.

You might wonder whether it is necessary to chomp() the line-end characters off the lines read in (see
8.4), when the only lines that are used will be printed out with a line-end character (\n) added (8.15) –
isn’t this like “marching up to the top of the hill and marching down again”? But \n is your line-end
character; if the weather records file was created by other people working in other computing
environments, it may use different conventions. It is wise to make sure that output you generate conforms
to your own conventions.

A further point to notice here is that the value assigned to $date is created (in 8.5) as a substring of a
longer string of characters, which contains letters as well as numbers. But each character of the substring
$date is a digit – $date looks like a number, so we can treat it as a number. In this case we compare
$date to other numbers, but equally (if we wanted to) we could use $date in arithmetic operations
such as addition or division. In many programming languages one could not do that. In those languages, a
string of digit characters is a character-string, not a number, and we would need to convert it into the
number it looks like before we could use it as a number. Perl is more easygoing.

A final point about (8) has to do with error-trapping. In connexion with die we saw that it is wise not
to make too many assumptions about external files being as they ideally should be. Even if the
annualRecords file is at the location identified in 8.1 (so that the die instruction is not activated), there
could easily be unpleasant surprises within its contents. Program (8) is written on the assumption that
annualRecords contains a line for each year, that the year name occupies the first four bytes of its line, and
that the years are in the correct order. But what if, some year, annualRecords were updated incorrectly,
perhaps with the year name at the end rather than the beginning of the line?

At the very least, it would be wise in practice not to take for granted that a line which fails the tests in 8.6
and 8.8 must be a line beginning with a year in the 1970s. We could build in an explicit check, by
replacing 8.13–16 with:

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Perl for Beginners

39

Reading from a file

elsif($date >= 1970 and $date <= 1979)
 {
 print "$line\n";
 }
else
 {
 die("Ill-formed line: $line\n");
 }

Perhaps the input file is fine and this die instruction will never be triggered, but it costs nothing to include it.

Programs written for real-life purposes tend to contain a great deal of error-trapping – sometimes there
will be more error-trapping code than code which we want to be executed. It would be confusing for code
examples in a textbook to contain a realistic amount of error-trapping code, because it would distract the
reader’s attention from the central point being made by a particular example; so the code displayed in this
book will often assume that external files are as they should be. But bear in mind when programming in
practice that it is wise to think about what might go wrong, and to include code to handle it explicitly just
in case it does go wrong.

By 2020, wind could provide one-tenth of our planet’s
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
systems for on-line condition monitoring and automatic
lubrication. We help make it more economical to create
cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity,
industries can boost performance beyond expectations.

Therefore we need the best employees who can
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering.

Visit us at www.skf.com/knowledge

http://bookboon.com/
http://bookboon.com/count/advert/0d9efd82-96d7-e011-adca-22a08ed629e5

